Silicon Nanoribbon FET Sensors: Fabrication, Surface Modification and Microfluidic Integration

نویسنده

  • Roodabeh Afrasiabi
چکیده

Over the past decade, the field of medical diagnostics has seen an incredible amount of research towards the integration of one-dimensional nanostructures such as carbon nanotubes, metallic and semiconducting nanowires and nanoribbons for a variety of bio-applications. Among the mentioned one-dimensional structures, silicon nanoribbon (SiNR) field-effect transistors (FET) as electro-chemical nanosensors hold particular promise for label-free, real-time and sensitive detection of biomolecules using affinity-based detection. In SiNR FET sensors, electrical transport is primarily along the nanoribbon axis in a thin sheet (< 30 nm) serving as the channel. High sensitivity is achieved because of the large surface-to-volume ratio which allows analytes to bind anywhere along the NR affecting the entire conductivity by their surface charge. Unfortunately, sensitivity without selectivity is still an ongoing issue and this thesis aims at addressing the detection challenges and further proposing effective developments, such as parallel and multiple detection through using individually functionalized SiNRs. We present here a comprehensive study on design, fabrication, operation and device performance parameters for the next generation of SiNR FET sensors towards multiplexed, label-free detection of biomolecules using an on-chip microfluidic layer which is based on a highly cross-linked epoxy. We first study the sensitivity of different NR dimensions followed by analysis of the drift and hysteresis effects. We have also addressed two types of gate oxides (namely SiO2 and Al2O3) which are commonly used in standard CMOS fabrication of ISFETs (Ion sensitive FET). Not only have we studied and compared the hysteresis and response-time effects in the mentioned two types of oxides but we have also suggested a new integrated on-chip reference nanoribbon/microfluidics combination to monitor the long-term drift in the SiNR FET nanosensors. Our results show that compared to Al2O3, silicon-oxide gated SiNR FET sensors show high hysteresis and slow-response which limit their performance only to background electrolytes with low ionic strength. Al2O3 on the other hand proves more promising as the gate-oxide of choice for use in nanosensors. We have also illustrated that the new integrated sensor NR/Reference NR can be utilized for real-time monitoring of the above studied sources of error during pH-sensing. Furthermore, we have introduced a new surface silanization (using 3-aminopropyltriethoxysilane) method utilizing microwave-assisted heating which compared to conventional heating, yields an amino-terminated monolayer with high surface coverage on the oxide surface of the nanoribbons. A highly uniform and dense monolayer not only reduces the pH sensitivity of the bare-silicon oxide surface in a physiological media but also allows for more receptors to be immobilized on the surface. Protocols for surface functionalization and biomolecule immobilization were evaluated using model systems. Selective spotting of receptor molecules can be used to achieve localized functionalization of individual SiNRs, opening up opportunities for multiplexed detection of analytes. Additionally, we present here a novel approach by integrating droplet-based microfluidics with the SiNR FET sensors. Using the new system we are able to successfully detect trains of droplets with various pH values. The integrated system enables a wide range of label-free biochemical and macromolecule sensing applications based on detection of biological events such as enzyme-substrate interactions within the droplets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of a Droplet-Based Microfluidic System and Silicon Nanoribbon FET Sensor

We present a novel microfluidic system that integrates droplet microfluidics with a silicon nanoribbon field-effect transistor (SiNR FET), and utilize this integrated system to sense differences in pH. The device allows for selective droplet transfer to a continuous water phase, actuated by dielectrophoresis, and subsequent detection of the pH level in the retrieved droplets by SiNR FETs on an ...

متن کامل

Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection

Sensitive and quantitative detection of tumor markers is highly required in the clinic for cancer diagnosis and consequent treatment. A field-effect transistor-based (FET-based) nanobiosensor emerges with characteristics of being label-free, real-time, having high sensitivity, and providing direct electrical readout for detection of biomarkers. In this paper, a top-down approach is proposed and...

متن کامل

Integration of microfluidics with grating coupled silicon photonic sensors by one-step combined photopatterning and molding of OSTE.

We present a novel integration method for packaging silicon photonic sensors with polymer microfluidics, designed to be suitable for wafer-level production methods. The method addresses the previously unmet manufacturing challenges of matching the microfluidic footprint area to that of the photonics, and of robust bonding of microfluidic layers to biofunctionalized surfaces. We demonstrate the ...

متن کامل

Femtosecond laser fabrication of integrated optical waveguides and microfluidic channels for lab-on-chip devices

We use a femtosecond laser to fabricate on a glass substrate both microfluidic channels and high quality optical waveguides, intersecting each other. Waveguide-channel integration opens new prospects for in-situ sensing in lab-on-chip devices. Introduction A lab-on-chip (LOC) is a device that squeezes onto a single glass substrate the functionalities of a biological laboratory, by incorporating...

متن کامل

Biosensing microsystem platform based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers

We have achieved the design, fabrication and packaging of microfluidic networks with photonic sensors for novel labon-chip platforms which incorporate the on-chip biosensing detection. As sensors, we used an integrated Mach-Zehnder interferometer (MZI) based on TIR waveguides (Si/SiO2/Si3N4) of micro/nanodimensions for evanescent field detection of biomolecular interactions onto the sensing are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016